SECTION 1

Summary for the Public
(2014 Supplement)

Cindy Sage, MA
Sage Associates
Co-Editor, BioInitiative Report
Santa Barbara, CA USA

Prepared for the BioInitiative Working Group
March 2014
TABLE OF CONTENTS

I. SUMMARY FOR THE PUBLIC - 2014
 A. Introduction
 B. Why We Care?
 C. Do We Know Enough to Take Action?

II. SUMMARY OF KEY SCIENTIFIC EVIDENCE
 (Also see Section 5 – Section 24)
 A. Evidence for Damage to Sperm and Reproduction
 B. Evidence that Children are More Vulnerable
 C. Evidence for Fetal and Neonatal Effects
 D. Evidence for Effects on Autism (Autism Spectrum Conditions)
 E. Evidence for Electrohypersensitivity
 F. Evidence for Effects from Cell Tower-Level RFR Exposures
 G. Evidence for Effects on the Blood-brain Barrier
 H. Evidence for Effects on Brain Tumors
 I. Evidence for Effects on Genes (Genotoxicity)
 J. Evidence for Effects on the Nervous System (Neurotoxicity)
 K. Evidence for Effects on Cancer (Childhood Leukemia, Adult Cancers
 L. Melatonin, Breast Cancer and Alzheimer’s Disease
 M. Stress, Stress Proteins and DNA as a Fractal Antenna
 N. Effects of Weak-Field Interactions on Non-Linear Biological
 Oscillators and Synchronized Neural Activity

III. EMF EXPOSURES AND PRUDENT PUBLIC HEALTH PLANNING

IV. RECOMMENDED ACTIONS
 A. Defining preventative actions for reduction in RFR exposures
 B. Defining new ‘effect level’ for RFR
I. SUMMARY FOR THE PUBLIC

A. Introduction

The BioInitiative Working Group concluded in 2007 that existing public safety limits were inadequate to protect public health, and agreed that new, biologically-based public safety limits were needed five years ago. The BioInitiative Report was prepared by more than a dozen world-recognized experts in science and public health policy; and outside reviewers also contributed valuable content and perspective.

From a public health standpoint, experts reasoned that it was not in the public interest to wait. In 2007, the evidence at hand coupled with the enormous populations placed at possible risk was argued as sufficient to warrant strong precautionary measures for RFR, and lowered safety limits for ELF-EMF. The ELF recommendations were biologically-based and reflected the ELF levels consistently associated with increased risk of childhood cancer, and further incorporated a safety factor that is proportionate to others used in similar circumstances. The public health cost of doing nothing was judged to be unacceptable in 2007.

What has changed in 2012? In twenty-four technical chapters, the contributing authors discuss the content and implications of about 1800 new studies. Overall, these new studies report abnormal gene transcription (Section 5); genotoxicity and single- and double-strand DNA damage (Section 6); stress proteins because of the fractal RF-antenna like nature of DNA (Section 7); chromatin condensation and loss of DNA repair capacity in human stem cells (Sections 6 and 15); reduction in free-radical scavengers, particularly melatonin (Sections 5, 9, 13, 14, 15, 16 and 17); neurotoxicity in humans and animals (Section 9); carcinogenicity in humans (Sections 11, 12, 13, 14, 15, 16 and 17); serious impacts on human and animal sperm morphology and function (Section 18); effects on the fetus, neonate and offspring (Section 18 and 19); effects on brain and cranial bone development in the offspring of animals that are exposed to cell phone radiation during pregnancy (Sections 5 and 18); and findings in autism spectrum disorders consistent with EMF/RFR exposure. This is only a snapshot of the evidence presented in the BioInitiative 2012 updated report.

There is reinforced scientific evidence of risk from chronic exposure to low-intensity electromagnetic fields and to wireless technologies (radiofrequency radiation including microwave radiation). The levels at which effects are reported to occur is lower by hundreds of times in comparison to 2007. The range of possible health effects that are adverse with chronic exposures has broadened. There has been a big increase in the number of studies looking at the effects of cell phones (on the belt, or in the pocket of men radiating only on standby mode) and from wireless laptops on impacts to sperm quality and motility; and sperm death (fertility and reproduction). In other new studies of the fetus, infant and young child, and child-in-school – there are a dozen or more new studies of importance. There is more evidence that such exposures damage DNA, interfere with DNA repair, evidence of toxicity to the human genome (genes), more worrisome effects on the nervous system (neurology) and more and better studies on the effects of mobile phone base stations (wireless antenna facilities or cell towers) that report lower RFR levels over time can result in adverse health impacts.

Importantly, some very large studies were completed on brain tumor risk from cell phone use. The 13-country World Health Organization Interphone Final study (2010) produced evidence (although highly debated
among fractious members of the research committee) that cell phone use at 10 years or longer, with approximately 1,640 hours of cumulative use of a cell and/or cordless phone approximately doubles glioma risk in adults. Gliomas are aggressive, malignant tumors where the average life-span following diagnosis is about 400 days. That brain tumors should be revealed in epidemiological studies at ONLY 10 or more years is significant; x-ray and other ionizing radiation exposures that can also cause brain tumors take nearly 15-20 years to appear making radiofrequency/microwave radiation from cell phones a very effective cancer-causing agent. Studies by Lennart Hardell and his research team at Orebro University in Sweden later showed that children who start using a mobile phone in early years have more than a 5-fold (more than a 500%) risk for developing a glioma by the time they are in the 20-29 year age group. This has significant ramifications for public health intervention.

In short order, in 2011 the World Health Organization International Agency on Cancer Research (IARC) classified radiofrequency radiation as a Group 2B Possible Human Carcinogen, joining the IARC classification of ELF-EMF that occurred in 2001. The evidence for carcinogenicity for RFR was primarily from cell phone/brain tumor studies but by IARC rules, applies to all RFR exposures (it applies to the exposure, not just to devices like cell phones or cordless phones that emit RFR).

B. Why We Care?

The stakes are very high. Exposure to electromagnetic fields (both extremely low-frequency ELF-EMF from power frequency sources like power lines and appliances; and radiofrequency radiation or RFR) has been linked to a variety of adverse health outcomes that may have significant public health consequences. The most serious health endpoints that have been reported to be associated with extremely low frequency (ELF) and/or radiofrequency radiation (RFR) include childhood and adult leukemia, childhood and adult brain tumors, and increased risk of the neurodegenerative diseases, Alzheimer’s and amyotrophic lateral sclerosis (ALS). In addition, there are reports of increased risk of breast cancer in both men and women, genotoxic effects (DNA damage, chromatin condensation, micronucleation, impaired repair of DNA damage in human stem cells), pathological leakage of the blood–brain barrier, altered immune function including increased allergic and inflammatory responses, miscarriage and some cardiovascular effects. Insomnia (sleep disruption) is reported in studies of people living in very low-intensity RF environments with WI-FI and cell tower-level exposures. Short-term effects on cognition, memory and learning, behavior, reaction time, attention and concentration, and altered brainwave activity (altered EEG) are also reported in the scientific literature. Biophysical mechanisms that may account for such effects can be found in various articles and reviews (Sage, 2012).

Traditional scientific consensus and scientific method is but one contributor to deciding when to take public health action; rather, it is one of several voices that are important in determining when new actions are warranted to protect public health. Certainly it is important, but not the exclusive purview of scientists alone to determine for all of society when changes are in the public health interest and welfare of children.
C. Do We Know Enough to Take Action

Human beings are bioelectrical systems. Our hearts and brains are regulated by internal bioelectrical signals. Environmental exposures to artificial EMFs can interact with fundamental biological processes in the human body. In some cases, this may cause discomfort, or sleep disruption, or loss of well-being (impaired mental functioning and impaired metabolism) or sometimes, maybe it is a dread disease like cancer or Alzheimer’s disease. It may be interfering with one’s ability to become pregnant, or to carry a child to full term, or result in brain development changes that are bad for the child. It may be these exposures play a role in causing long-term impairments to normal growth and development of children, tipping the scales away from becoming productive adults. The use of common wireless devices like wireless laptops and mobile phones requires urgent action simply because the exposures are everywhere in daily life; we need to define whether and when these exposures can damage health, or the children of the future who will be born to parents now immersed in wireless exposures.

Since World War II, the background level of EMF from electrical sources has risen exponentially, most recently by the soaring popularity of wireless technologies such as cell phones (six billion in 2011-12, up from two billion in 2006), cordless phones, WI-FI, WiMAX and LTE networks. Some countries are moving from telephone landlines (wired) to wireless phones exclusively, forcing wireless exposures on uninformed populations around the world. These wireless exposures at the same time are now classified by the world’s highest authority on cancer assessment, the World Health Organization International Agency for Research on Cancer to be a possible risk to health. Several decades of international scientific research confirm that EMFs are biologically active in animals and in humans. Now, the balance has clearly shifted to one of ‘presumption of possible adverse effects’ from chronic exposure. It is difficult to conclude otherwise, when the bioeffects that are clearly now occurring lead to such conditions as pathological leakage of the blood-brain barrier (allowing toxins into the brain tissues); oxidative damage to DNA and the human genome, preventing normal DNA repair in human stem cells; interfering with healthy sperm production; producing poor quality sperm or low numbers of healthy sperm, altering fetal brain development that may be fundamentally tied to epidemic rates of autism and problems in school children with memory, attention, concentration, and behavior; and leading to sleep disruptions that undercut health and healing in numerous ways.

In today’s world, everyone is exposed to two types of EMFs: (1) extremely low frequency electromagnetic fields (ELF) from electrical and electronic appliances and power lines and (2) radiofrequency radiation (RFR) from wireless devices such as cell phones and cordless phones, cellular antennas and towers, and broadcast transmission towers. In this report we will use the term EMFs when referring to all electromagnetic fields in general; and the terms ELF or RFR when referring to the specific type of exposure. They are both types of non-ionizing radiation, which means that they do not have sufficient energy to break off electrons from their orbits around atoms and ionize (charge) the atoms, as do x-rays, CT scans, and other forms of ionizing radiation. A glossary and definitions are provided in this report to assist you. Some handy definitions you will probably need when reading about ELF and RF in this summary section (the language for measuring it) are shown in Section 26 – Glossary.
II. SUMMARY OF THE SCIENCE

A. Evidence for Damage to Sperm and Reproduction

Several international laboratories have replicated studies showing adverse effects on sperm quality, motility and pathology in men who use and particularly those who wear a cell phone, PDA or pager on their belt or in a pocket (See Section 18 for references including Agarwal et al, 2008; Agarwal et al, 2009; Wdowiak et al, 2007; De Iuliis et al, 2009; Fejes et al, 2005; Aitken et al, 2005; Kumar, 2012). Other studies conclude that usage of cell phones, exposure to cell phone radiation, or storage of a mobile phone close to the testes of human males affect sperm counts, motility, viability and structure (Aitken et al, 2004; Agarwal et al, 2007; Erogul et al, 2005). Animal studies have demonstrated oxidative and DNA damage, pathological changes in the testes of animals, decreased sperm mobility and viability, and other measures of deleterious damage to the male germ line (Dasdag et al, 1999; Yan et al, 2007; Otitolouju et al, 2010; Salama et al, 2008; Behari et al, 2006; Kumar et al, 2012). There are fewer animal studies that have studied effects of cell phone radiation on female fertility parameters. Panagopoulous et al (2012) report decreased ovarian development and size of ovaries, and premature cell death of ovarian follicles and nurse cells in Drosophila melanogaster. Gul et al (2009) reported rats exposed to stand-by level RFR (phones on but not transmitting calls) had a decrease in the number of ovarian follicles in pups born to these exposed dams. Magras and Xenos (1997) reported irreversible infertility in mice after five (5) generations of exposure to RFR at cell phone tower exposure levels of less than one microwatt per centimeter squared (µW/cm2). See Section 18 for references.

HUMAN SPERM AND THEIR DNA ARE DAMAGED

Human sperm are damaged by cell phone radiation at very low intensities (0.00034 – 0.07 µW/cm2). There is a veritable flood of new studies reporting sperm damage in humans and animals, leading to substantial concerns for fertility, reproduction and health of the offspring (unrepaired de novo mutations in sperm). Exposure levels are similar to those resulting from wearing a cell phone on the belt, or in the pants pocket, or using a wireless laptop computer on the lap. Sperm lack the ability to repair DNA damage. (Behari and Rajamani, Section 18) young child are more vulnerable than older persons are to chemicals and ionizing radiation. The US Environmental Protection Agency (EPA) proposes a 10-fold risk adjustment for the first 2 years of life exposure to carcinogens, and a 3-fold adjustment for years 3 to 5. These adjustments do not deal with fetal risk, and the possibility of extending this protection to the fetus should be examined, because of fetus’ rapid organ development.

The Presidential Cancer Panel (2010) found that children “are at special risk due to their smaller body mass and rapid physical development, both of which magnify their vulnerability to known carcinogens, including radiation.” The American Academy of Pediatrics, in a letter to Congressman Dennis Kucinich dated 12 December 2012 states: “Children are disproportionately affected by environmental exposures, including cell phone radiation. The differences in bone density and the amount of fluid in a child’s brain compared to an adult’s brain could allow children to absorb greater quantities of RF energy deeper into their brains than adults. It is essential that any new standards for cell phones or other wireless devices be based on protecting the youngest and most vulnerable populations to ensure they are safeguarded through their lifetimes.”
The issue around exposure of children to RFR is of critical importance. There is overwhelming evidence that children are more vulnerable than adults to many different exposures (Sly and Carpenter, 2012), including RFR, and that the diseases of greatest concern are cancer and effects on neurodevelopment. Yet parents place RFR-emitting baby monitors in cribs, provide very young children with wireless toys, and give cell phones to young children, usually without any knowledge of the potential dangers. A growing concern is the movement to make all student computer laboratories in schools wireless. A wired computer laboratory will not increase RFR exposure, and will provide safe access to the Internet (Section, Sage and Carpenter, BioInitiative 2012 Report).

C. Evidence for Fetal and Neonatal Effects

Effects on the developing fetus from in-utero exposure to cell phone radiation have been observed in both human and animal studies since 2006. Sources of fetal and neonatal exposures of concern include cell phone radiation (both paternal use of wireless devices worn on the body and maternal use of wireless phones during pregnancy). Sources include exposure to whole-body RFR from base stations and Wi-Fi, use of wireless laptops, use of incubators for newborns with excessively high ELF-EMF levels resulting in altered heart rate variability and reduced melatonin levels in newborns, fetal exposures to MRI of the pregnant mother, and greater susceptibility to leukemia and asthma in the child where there have been maternal exposures to ELF-EMF. Divan et al (2008) found that children born to mothers who used cell phones during pregnancy develop more behavioral problems by the time they have reached school age than children whose mothers did not use cell phones during pregnancy. Children whose mothers used cell phones during pregnancy had 25% more emotional problems, 35% more hyperactivity, 49% more conduct problems and 34% more peer problems (Divan et al, 2008). Aldad et al (2012) showed that cell phone radiation significantly altered fetal brain development and produced ADHD-like behavior in the offspring of pregnant mice. Exposed mice had a dose-dependent impaired glutamatergic synaptic transmission onto Layer V pyramidal neurons of the prefrontal cortex. The authors conclude the behavioral changes were the result of altered neuronal developmental programming in utero. Offspring mice were hyperactive and had impaired memory function and behavior problems, much like the human children in Divan et al (2008). See Sections 19 and 20 for references. Fragopoulou et al (2012) reports that brain astrocyte development followed by proteomic studies is adversely affected by DECT (cordless phone radiation) and mobile phone radiation.

Fetal (in-utero) and early childhood exposures to cell phone radiation and wireless technologies in general may be a risk factor for hyperactivity, learning disorders and behavioral problems in school. Common sense measures to limit both ELF-EMF and RF EMF in these populations is needed, especially with respect to avoidable exposures like incubators that can be modified; and where education of the pregnant mother with respect to laptop computers, mobile phones and other sources of ELF-EMF and RF EMF are easily instituted.

A precautionary approach may provide the frame for decision-making where remediation actions have to be realized to prevent high exposures of children and pregnant woman.

(Bellieni and Pinto, 2012 – Section 19)
D. Evidence for Effects on Autism (Autism Spectrum Conditions)

Physicians and health care practitioners should raise the visibility of EMF/RFR as a plausible environmental factor in ASC clinical evaluations and treatment protocols. Reducing or removing EMF and wireless RFR stressors from the environment is a reasonable precautionary action given the overall weight of evidence for a link to ASCs.

Several thousand scientific studies over four decades point to serious biological effects and health harm from EMF and RFR. These studies report genotoxicity, single-and double-strand DNA damage, chromatin condensation, loss of DNA repair capacity in human stem cells, reduction in free-radical scavengers (particularly melatonin), abnormal gene transcription, neurotoxicity, carcinogenicity, damage to sperm morphology and function, effects on behavior, and effects on brain development in the fetus of human mothers that use cell phones during pregnancy. Cell phone exposure has been linked to altered fetal brain development and ADHD-like behavior in the offspring of pregnant mice.

Many disrupted physiological processes and impaired behaviors in people with ASCs closely resemble those related to biological and health effects of EMF/RFR exposure. Biomarkers and indicators of disease and their clinical symptoms have striking similarities. At the cellular and molecular level many studies of people with ASCs have identified oxidative stress and evidence of free-radical damage, as well as deficiencies of antioxidants such as glutathione. Elevated intracellular calcium in ASCs can be associated with genetic mutations but more often may be downstream of inflammation or chemical exposures. Lipid peroxidation of cell membranes, disruption of calcium metabolism, altered brain wave activity and consequent sleep, behavior and immune dysfunction, pathological leakage of critical barriers between gut and blood or blood and brain may also occur. Mitochondria may function poorly, and immune system disturbances of various kinds are common. Changes in brain and autonomic nervous system electrophysiology can be measured and seizures are far more common than in the population at large. Sleep disruption and high levels of stress are close to universal. All of these phenomena have also been documented to result from or be modulated by EMF/RFR exposure.

- Children with existing neurological problems that include cognitive, learning, attention, memory, or behavioral problems should as much as possible be provided with wired (not wireless) learning, living and sleeping environments.
- Special education classrooms should observe 'no wireless' conditions to reduce avoidable stressors that may impede social, academic and behavioral progress.
- All children should reasonably be protected from the physiological stressor of significantly elevated EMF/RFR (wireless in classrooms, or home environments).
- School districts that are now considering all-wireless learning environments should be strongly cautioned that wired environments are likely to provide better learning and teaching environments, and prevent possible adverse health consequences for both students and faculty in the long-term.
- Monitoring of the impacts of wireless technology in learning and care environments should be performed with sophisticated measurement and data analysis techniques that are cognizant of the non-linear impacts of EMF/RFR and of data techniques most appropriate for discerning these impacts.
- There is sufficient scientific evidence to warrant the selection of wired Internet, wired classrooms and wired learning devices, rather than making an expensive and potentially health-harming commitment to wireless devices that may have to be substituted out later.
- Wired classrooms should reasonably be provided to all students who opt-out of wireless environments.

(Herbert and Sage, 2012 – Section 20)
The public needs to know that these risks exist, that transition to wireless should not be presumed safe, and that it is very much worth the effort to minimize exposures that still provide the benefits of technology in learning, but without the threat of health risk and development impairments to learning and behavior in the classroom.

Broader recommendations also apply, related to reducing the physiological vulnerability to exposures, reduce allostatic load and build physiological resiliency through high quality nutrition, reducing exposure to toxicants and infectious agents, and reducing stress, all of which can be implemented safely based upon presently available knowledge.

E. Evidence for Electrohypersensitivity

The contentious question of whether electrohypersensitivity exists as a medical condition and what kinds of testing might reveal biomarkers for diagnosis and treatment has been furthered by several new studies presented in Section 24 – Key Scientific Evidence and Public Health Policy Recommendations. What is evident is that a growing number of people world-wide have serious and debilitating symptoms that key to various types of EMF and RFR exposure. Of this there is little doubt. The continued massive rollout of wireless technologies, in particular the wireless ‘smart’ utility meter, has triggered thousands of complaints of ill-health and disabling symptoms when the installation of these meters is in close proximity to family home living spaces.

McCarty et al (2011) studied electrohypersensitivity in a patient (a female physician). The patient was unable to detect the presence or absence of EMF exposure, largely ruling out the possibility of bias. In multiple trials with the fields either on or not on, the subject experienced and reported temporal pain, feeling of unease, skipped heartbeats, muscle twitches and/or strong headache when the pulsed field (100 ms, duration at 10 Hz) was on, but no or mild symptoms when it was off. Symptoms from continuous fields were less severe than with pulsed fields. The differences between field on and sham exposure were significant at the p < 0.05 level. The authors conclude that electromagnetic hypersensitivity is a neurological syndrome, and statistically reliable somatic reactions can be provoked in this patient by exposure to 60-Hz electric fields at 300 volts per meter (V/m). Marino et al (2012) responded to comments on his study with McCarty saying:

“EMF hypersensitivity can occur as a bona fide environmentally inducible neurological syndrome. We followed an empirical approach and demonstrated a cause-and-effect relationship (p < 0.05) under conditions that permitted us to infer the existence of electromagnetic hypersensitivity (EHS), a novel neurological syndrome.”

“EHS patients had a disturbed pattern of circadian rhythms of HRF and showed a relatively ‘flat’ representation of hourly-recorded spectral power of the HF component of HRV”. This research team also found that “EHS patients have a dysbalance of the autonomic nervous system (ANS) regulation with a trend to hyper-sympathotonia, as measured by heart rate (HR) and electrodermal activity, and a hyperreactivity to different external physical factors, as measured by brain evoked potentials and sympathetic skin responses to visual and audio stimulation.” (Lyskov et al, 2001 a,b; Sandstrom et al, 1997).

The reports referenced above provide evidence that persons who report being electrosensitive differ from others in having some abnormalities in the autonomic nervous system, reflected in measures such as heart rate variability.

F. Evidence for Effects from Cell Tower-Level RFR Exposures

Very low exposure RFR levels are associated with bioeffects and adverse health effects. At least five new cell tower studies are reporting bioeffects in the range of 0.001 to 0.05 µW/cm² at lower levels than reported in 2007 (0.05 to 0.1 uW/cm² was the range below which, in 2007, effects were not observed). Researchers report headaches, concentration difficulties and behavioral problems in children and adolescents; and sleep disturbances, headaches and concentration problems in adults. Public safety standards are 1,000 – 10,000 or more times higher than levels now commonly reported in mobile phone base station studies to cause bioeffects.

Since 2007, five new studies of base station level RFR at intensities ranging from less than 0.001 uW/cm² to 0.05 uW/cm² report headaches, concentration difficulties and behavioral problems in children and adolescents; and sleep disturbances, headaches and concentration problems in adults.

G. Evidence for Effects on the Blood-brain Barrier (BBB)

The Lund University (Sweden) team of Leif Salford, Bertil Persson and Henrietta Nittby has done pioneering work on effects of very low level RFR on the human brain’s protective lining – the barrier that protects the brain from large molecules and toxins that are in the blood.

THE BLOOD-BRAIN BARRIER IS AT RISK
The BBB is a protective barrier that prevents the flow of toxins into sensitive brain tissue. Increased permeability of the BBB caused by cell phone RFR may result in neuronal damage. Many research studies show that very low intensity exposures to RFR can affect the blood-brain barrier (BBB) (mostly animal studies). Summing up the research, it is more probable than unlikely that non-thermal EMF from cell phones and base stations do have effects upon biology. A single 2-hr exposure to cell phone radiation can result in increased leakage of the BBB, and 50 days after exposure, neuronal damage can be seen, and at the later time point also albumin leakage is demonstrated. The levels of RFR needed to affect the BBB have been shown to be as low as 0.001 W/kg, or less than holding a mobile phone at arm’s length. The US FCC standard is 1.6 W/kg; the ICNIRP standard is 2 W/kg of energy (SAR) into brain tissue from cell/cordless phone use. Thus, BBB effects occur at about 1000 times lower RFR exposure levels than the US and ICNIRP limits allow.

(Salford et al, 2012 - Section 10)
H. Evidence for Effects on Brain Tumors

The Orebro University (Sweden) team led by Lennart Hardell, MD, an oncologist and medical researcher, has produced an extraordinary body of work on environmental toxins of several kinds, including the effects of radiofrequency/microwave radiation and cancer. Their 2012 work concludes:

“Based on epidemiological studies there is a consistent pattern of increased risk for glioma and acoustic neuroma associated with use of mobile phones and cordless phones. The evidence comes mainly from two study centres, the Hardell group in Sweden and the Interphone Study Group. No consistent pattern of an increased risk is seen for meningioma. A systematic bias in the studies that explains the results would also have been the case for meningioma. The different risk pattern for tumor type strengthens the findings regarding glioma and acoustic neuroma. Meta-analyses of the Hardell group and Interphone studies show an increased risk for glioma and acoustic neuroma. Supportive evidence comes also from anatomical localisation of the tumor to the most exposed area of the brain, cumulative exposure in hours and latency time that all add to the biological relevance of an increased risk. In addition risk calculations based on estimated absorbed dose give strength to the findings. (Hardell et al, 2012 – Section 11)

“I. Evidence for Genotoxic Effects (Genotoxicity)

Genetic Damage (Genotoxicity Studies): There are at least several hundred published papers that report EMF (ELF/RFR) can affect cellular oxidative processes (oxidative damage). Increased free radical activity and changes in enzymes involved in cellular oxidative processes are the most consistent effects observed in cells and animals after EMF exposure. Aging may make an individual more susceptible to the detrimental effects of ELF EMF from oxidative damage, since anti-oxidants may decline with age. Clearly, the preponderance of genetic studies report DNA damage and failure to repair DNA damage.

One hundred fourteen (114) new papers on genotoxic effects of RFR published between 2007 and early 2014 are profiled. Of these, 74 (65%) showed effects and 40 (35%) showed no effects. (Lai, 2014 – Section 6)

Fifty nine (59) new ELF-EMF papers and two static magnetic field papers that report on genotoxic effects of ELF-EMF published between 2007 and early 2014 are profiled. Of these, 49 (83%) show effects and 10 (17%) show no effect. (Lai, 2014 – Section 6)
Factors that act directly or indirectly on the nervous system can cause morphological, chemical, or electrical changes in the nervous system that can lead to neurological effects. Both RF and ELF EMF affect neurological functions and behavior in animals and humans.

Two hundred eleven (211) new papers that report on neurological effects of RFR published between 2007 and early 2014 are profiled. Of these, 144 (68%) showed effects and 67 (32%) showed no effects.

One hundred five (105) new ELF-EMF papers (including two static field papers) that report on neurological effects of ELF-EMF published between 2007 and early 2014 are profiled. Of these, 95 (90%) show effects and 10 (10%) show no effect. (Lai, 2014 – Section 9)

K. Evidence for Cancer (Childhood Leukemia)

With overall 42 epidemiological studies published to date, power frequency ELF-EMF is among the most comprehensively studied environmental factors. Except ionizing radiation no other environmental factor has been as firmly established to increase the risk of childhood leukemia.

Sufficient evidence exists from epidemiological studies of an increased risk from exposure to EMF (power frequency ELF-EMF magnetic fields) and cannot be attributed to chance, bias or confounding. Therefore, according to the rules of IARC such exposures can be classified as a Group 1 carcinogen (Known Carcinogen).

There is no other risk factor identified so far for which such unlikely conditions have been put forward to postpone or deny the necessity to take steps towards exposure reduction. As one step in the direction of precaution, measures should be implemented to guarantee that exposure due to transmission and distribution lines is below an average of about 1 mG. This value is arbitrary at present and only supported by the fact that in many studies this level has been chosen as a reference. (Kundi, 2012 – Section 12)

L. Melatonin, Breast Cancer and Alzheimer’s Disease

MELATONIN AND BREAST CANCER: Eleven (11) of the 13 published epidemiologic residential and occupational studies are considered to provide (positive) evidence that high ELF magnetic fields (MF) exposure can result in decreased melatonin production. The two negative studies had important deficiencies that may certainly have biased the results. There is sufficient evidence to conclude that long-term relatively high ELF MF exposure can result in a decrease in melatonin production. It has not been determined to what extent personal characteristics, e.g., medications, interact with ELF MF exposure in decreasing melatonin production.
There is sufficient evidence to conclude that long-term relatively high ELF MF exposure can result in a decrease in melatonin production, which may increase risk for breast cancer. It has not been determined to what extent personal characteristics, e.g., medications, interact with ELF MF exposure in decreasing melatonin production. New research indicates that ELF MF exposure, in vitro, can significantly decrease melatonin activity through effects on MT1, an important melatonin receptor. Five longitudinal studies have now been conducted of low melatonin production as a risk factor for breast cancer. There is increasingly strong longitudinal evidence that low melatonin production is a risk factor for at least post-menopausal breast cancer.

(Davanipour and Sobel, 2012 – Section 13)

ALZHEIMER’S DISEASE: There is now evidence that a) high levels of peripheral amyloid beta are a risk factor for AD, and b) medium to high ELF MF exposure can increase peripheral amyloid beta. High brain levels of amyloid beta are also a risk factor for AD and medium to high ELF MF exposure to brain cells likely also increases these cells’ production of amyloid beta. There is considerable in vitro and animal evidence that melatonin protects against AD. Therefore it is certainly possible that low levels of melatonin production are associated with an increase in the risk of AD.

There is strong epidemiologic evidence that exposure to ELF MF is a risk factor for AD. There are now twelve (12) studies of ELF MF exposure and AD or dementia. Nine (9) of these studies are considered positive and three (3) are considered negative. The three negative studies have serious deficiencies in ELF MF exposure classification that results in subjects with rather low exposure being considered as having significant exposure. There are insufficient studies to formulate an opinion as to whether radiofrequency MF exposure is a risk or protective factor for AD.

There is now evidence that (i) high levels of peripheral amyloid beta are a risk factor for AD and (ii) medium to high ELF MF exposure can increase peripheral amyloid beta. High brain levels of amyloid beta are also a risk factor for AD and medium to high ELF MF exposure to brain cells likely also increases these cells’ production of amyloid beta.

There is considerable in vitro and animal evidence that melatonin protects against AD. Therefore it is certainly possible that low levels of melatonin production are associated with an increase in the risk of AD.

(Davanipour and Sobel, 2012 – Section 13)

M. Stress, Stress Proteins and DNA as a Fractal Antenna

Any agent (EMF, ionizing radiation, chemicals, heavy metals, heat and other factors) that continuously generates stress proteins is not adaptive, and is harmful, if it is a constant provocation. The work of Martin Blank and Reba Goodman of Columbia University has established that stress proteins are produced by ELF-EMF and RFR at levels far below what current safety standards allow. Further, they think DNA is actually a very good fractal RF-antenna which is very sensitive to low doses of EMF, and may induce the cellular processes that result in chronic ‘unrelenting’ stress. That daily environmental levels of ELF-EMF and RFR can and do throw the human body into stress protein response mode (out of homeostasis) is a fundamental and continuous insult. Chronic exposures can then result in chronic ill-health.

“It appears that the DNA molecule is particularly vulnerable to damage by EMF because of the coiled-coil configuration of the compacted molecule in the nucleus. The unusual structure endows it with the self similarity of a fractal antenna and the resulting sensitivity to a wide range of frequencies. The greater reactivity of DNA with EMF, along with a vulnerability to damage,
underscores the urgent need to revise EMF exposure standards in order to protect the public. Recent studies have also exploited the properties of stress proteins to devise therapies for limiting oxidative damage and reducing loss of muscle strength associated with aging.” (Blank, 2012–Section 7)

- DNA acts as a ‘fractal antenna’ for EMF and RFR. The coiled-coil structure of DNA in the nucleus makes the molecule react like a fractal antenna to a wide range of frequencies.
- The structure makes DNA particularly vulnerable to EMF damage.
- The mechanism involves direct interaction of EMF with the DNA molecule (claims that there are no known mechanisms of interaction are patently false).
- Many EMF frequencies in the environment can and do cause DNA changes.
- The EMF-activated cellular stress response is an effective protective mechanism for cells exposed to a wide range of EMF frequencies.
- EMF stimulates stress proteins (indicating an assault on the cell).
- EMF efficiently harms cells at billions of times lower levels than conventional heating.
- Safety standards based on heating are irrelevant to protect against EMF-levels of exposure. There is an urgent need to revise EMF exposure standards. Research has shown thresholds are very low (safety standards must be reduced to limit biological responses). Biologically-based safety standards could be developed from the research on the stress response. (Blank, 2012–Section 7).

N. Effects of Weak-Field Interactions on Non-Linear Biological Oscillators and Synchronized Neural Activity:

A unifying hypothesis for a plausible biological mechanism to account for very weak field EMF bioeffects other than cancer may lie with weak field interactions of pulsed RFR and ELF-modulated RFR as disrupters of synchronized neural activity. Electrical rhythms in our brains can be influenced by external signals. This is consistent with established weak field effects on coupled biological oscillators in living tissues. Biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony, and are dependent on exquisitely timed cues from the environment at vanishingly small levels (Buzsaki, 2006; Strogatz, 2003). The key to synchronization is the joint actions of cells that co-operate electrically and link populations of biological oscillators that couple together in large arrays and synchronize spontaneously. Synchronous biological oscillations in cells (pacemaker cells) can be disrupted by artificial, exogenous environmental signals, resulting in desynchronization of neural activity that regulates critical functions (including metabolism) in the brain, gut and heart and circadian rhythms governing sleep and hormone cycles (Strogatz, 1987). The brain contains a population of oscillators with distributed natural frequencies, which pull one another into synchrony (the circadian pacemaker cells). Strogatz has addressed the unifying mathematics of biological cycles and external factors disrupt these cycles (Strogatz, 2001, 2003)

“Rhythms can be altered by a wide variety of agents and that these perturbations must seriously alter brain performance.” (Busaki, 2006)
III. EMF EXPOSURE AND PRUDENT PUBLIC HEALTH PLANNING

Chronic exposure to low-intensity RFR and to ELF-modulated RFR at today’s environmental levels in many cities will exceed thresholds for increased risk of many diseases and causes of death (Sage and Huttunen, 2012). RFR exposures in daily life alter homeostasis in human beings. These exposures can alter and damage genes, trigger epigenetic changes to gene expression and cause de novo mutations that prevent genetic recovery and healing mechanisms. These exposures may interfere with normal cardiac and brain function; alter circadian rhythms that regulate sleep, healing, and hormone balance; impair short-term memory, concentration, learning and behavior; provoke aberrant immune, allergic and inflammatory responses in tissues; alter brain metabolism; increase risks for reproductive failure (damage sperm and increase miscarriage risk); and cause cells to produce stress proteins. Exposures now common in home and school environments are likely to be physiologically addictive and the effects are particularly serious in the young (Sage and Huttunen, 2012).

RECOMMENDED ACTIONS

A. Defining Preventative Actions for Reduction in RFR Exposures

ELF-EMF and RFR are Classified as Possible Cancer-causing Agents – Why Are Governments Not Acting?

The World Health Organization International Agency for Research on Cancer has classified wireless radiofrequency as a Possible Human Carcinogen (May, 2011)*. The designation applies to low-intensity RFR in general, covering all RFR-emitting devices and exposure sources (cell and cordless phones, Wi-Fi, wireless laptops, wireless hotspots, electronic baby monitors, wireless classroom access points, wireless antenna facilities). The IARC Panel could have chosen to classify RFR as a Group 4 – Not A Carcinogen if the evidence was clear that RFR is not a cancer-causing agent. It could also have found a Group 3 designation was a good interim choice (Insufficient Evidence). IARC did neither.

New Safety Limits Must Be Established – Health Agencies Should Act Now

Existing public safety limits (FCC and ICNIRP public safety limits) do not sufficiently protect public health against chronic exposure from very low-intensity exposures. If no mid-course corrections are made to existing and outdated safety limits, such delay will magnify the public health impacts with even more applications of wireless-enabled technologies exposing even greater populations around the world in daily life.

Scientific Benchmarks for Harm Plus Safety Margins = New Safety Limits that are Valid

Health agencies and regulatory agencies that set public safety standards for ELF-EMF and RFR should act now to adopt new, biologically-relevant safety limits that key to the lowest scientific benchmarks for harm coming from the recent studies, plus a lower safety margin. Existing public safety limits are too high by several orders of magnitude, if prevention of bioeffects and resulting adverse health effects are to be minimized or
eliminated. Most safety standards are a thousand times or more too high to protect healthy populations, and even less effective in protecting sensitive subpopulations.

Sensitive Populations Must Be Protected

Safety standards for sensitive populations will more likely need to be set at lower levels than for healthy adult populations. Sensitive populations include the developing fetus, the infant, children, the elderly, those with pre-existing chronic diseases, and those with developed electrical sensitivity (EHS).

Protecting New Life – Infants and Children

Strong precautionary action and clear public health warnings are warranted immediately to help prevent a global epidemic of brain tumors resulting from the use of wireless devices (mobile phones and cordless phones). Commonsense measures to limit both ELF-EMF and RFR in the fetus and newborn infant (sensitive populations) are needed, especially with respect to avoidable exposures like baby monitors in the crib and baby isolettes (incubators) in hospitals that can be modified; and where education of the pregnant mother with respect to laptop computers, mobile phones and other sources of ELF-EMF and RFR are easily instituted.

Wireless laptops and other wireless devices should be strongly discouraged in schools for children of all ages.

Standard of Evidence for Judging the Science

The standard of evidence for judging the scientific evidence should be based on good public health principles rather than demanding scientific certainty before actions are taken.

Wireless Warnings for All

The continued rollout of wireless technologies and devices puts global public health at risk from unrestricted wireless commerce unless new, and far lower exposure limits and strong precautionary warnings for their use are implemented.

EMF and RFR are Preventable Toxic Exposures

We have the knowledge and means to save global populations from multi-generational adverse health consequences by reducing both ELF and RFR exposures. Proactive and immediate measures to reduce unnecessary EMF exposures will lower disease burden and rates of premature death.

B. Defining New ‘Effect Level’ for RFR

Section 24 concludes that RFR ‘effect levels’ for bioeffects and adverse health effects justify new and lower precautionary target levels for RFR exposure. New epidemiological and laboratory studies are finding effects on humans at lower exposure levels where studies are of longer duration (chronic exposure studies). Real-world experience is revealing worrisome evidence that sperm may be damaged by cell phones even on
stand-by mode; and people can be adversely affected by placing new wireless pulsed RFR transmitters (utility meters on the sides or interiors of homes), even when the time-weighted average for RFR is miniscule in both cases.

There is increasing reason to believe that the critical factor for biologic significance is the intermittent pulse of RF, not the time-averaged SAR. For example, Hansson Mild et al, (2012) concluded there could be no effect on sleep and testicular function from a GSM mobile phone because the “exposure in stand-by mode can be considered negligible”. It may be that we, as a species, are more susceptible than we thought to intermittent, very low-intensity pulsed RFR signals that can interact with critical activities in living tissues. It is a mistake to conclude that the effect does not exist because we cannot explain HOW it is happening or it upsets our mental construct of how things should work.

This highlights the serious limitation of not taking the nature of the pulsed RFR signal (high intensity but intermittent, microsecond pulses of RFR) into account in the safety standards. This kind of signal is biologically active. Even if it is essentially mathematically invisible when the individual RFR pulses are time-averaged, it is apparently NOT invisible to the human body and its proper biological functioning.

For these reasons, and in light of parallel scientific work on non-linear biological oscillators including the accepted mathematics in this branch of science regarding coupled oscillators (Bezsaki, 2006; Strogatz, 2001, 2003), it is essential to think forward about the ramifications of shifting national energy strategies toward ubiquitous wireless systems. And, it is essential to re-think safety standards to take into account the exquisite sensitivity of biological systems and tissue interactions where the exposures are pulsed and cumulatively insignificant over time-scale averaging, but highly relevant to body processes and functioning. If it is true that weak-field effects have control elements over synchronous activity of neurons in the brain, and other pacemaker cells and tissues in the heart and gut that drive essential metabolic pathways as a result, then this will go far in explaining why living tissues are apparently so reactive to very small inputs of pulsed RFR, and lead to better understanding of what is required for new, biologically-based public exposure standards.

A reduction from the BioInitiative 2007 recommendation of 0.1 uW/cm2 (or one-tenth of a microwatt per square centimeter) for cumulative outdoor RFR down to something three orders of magnitude lower (in the low nanowatt per square centimeter range) is justified on a public health basis. We use the new scientific evidence documented in this Report to identify ‘effect levels’ and then apply one or more reduction factors to provide a safety margin. A cautionary target level for cumulative, outdoor pulsed RFR exposures for ambient wireless that could be applied to RFR sources from cell tower antennas, Wi-Fi, WiMAX and other similar sources is proposed. Research is needed to determine what is biologically damaging about intermittent pulses of RFR, and how to provide for protection in safety limits against it. With this knowledge it might be feasible to recommend a higher time-averaged number.

A scientific benchmark of 0.003 uW/cm2 or three nanowatts per centimeter squared for ‘lowest observed effect level’ for RFR is based on mobile phone base station-level studies. Applying a ten-fold reduction to compensate for the lack of long-term exposure (to provide a safety buffer for chronic exposure, if needed) or for children as a sensitive subpopulation (if studies are on adults, not children) yields a 300 to 600 picowatts per
square centimeter precautionary action level. This equates to a 0.3 nanowatts to 0.6 nanowatts per square centimeter as a reasonable, precautionary action level for chronic exposure to pulsed RFR. Even so, these levels may need to change in the future, as new and better studies are completed. This is what the authors said in 2007 (Carpenter and Sage, 2007, BioInitiative Report) and it remains true today in 2012.

We leave room for future studies that may lower or raise today’s observed ‘effects levels’ and should be prepared to accept new information as a guide for new precautionary action.